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Welcome to the first module of the course. It is indeed an exciting event to share with

you the subject that has lot to offer both from theoretical side and practical aspects.

To begin with, we will keep the things simple and straight to excite you about the

course. You can think of this module as a warm up game before the big match starts.

We do not assume you to have a preliminary background of linear algebra. Therefore,

we will build the basic blocks from scratch. So, lets start.

Lecture-1

We Shall begin with some simple examples.

Example1.1 Consider a calculator company which produces a scientific calculator and a

graphing calculator. Long-term projections indicate an expected demand of at least 1000

scientific and 800 graphing calculators each month. Because of limitations on production

capacity, no more than 2000 scientific and 1700 graphing calculators can be made monthly.

To satisfy a supplying contract, a total of atleast 2000 calculators must be supplied

each month. If each scientific calculator sold results in Rs.120 profit and each graphing

calculator sold produces a Rs.150 profit, how many of each type of calculators should be

made monthly to maximize the net profit.

Let’s make a mathematical model for the problem. Suppose, x is the number of scientific

calculators produced and y is the number of graphing calculators produced.

Since the company can not produce negative calculators; it will produce either no or

positive numbers of calculators only, we must have x ≥ 0, y ≥ 0. But, keeping in mind

the demand of each type of calculator we have

x ≥ 1000

y ≥ 800.

These two submused x ≥ 0, y ≥ 0. Thus, we can drop a superficial requirement of x ≥ 0,

y ≥ 0 from our modeling. But we caution you that this may not be the case always and

many a times it makes sense to assume variables be non-negative.

Another issue is to take care of production capacity of the calculators. So,

x ≤ 2000

y ≤ 1700.
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Looking at the supply restriction, we must have

x + y ≥ 2000.

There is no other information which is in the form of restrictions/conditions in the ques-

tion. Then, we move on to look at the profit part. The net profit from sale of x scientific

and y graphing calculators is

120x + 150y

Finally, we are able to identify our aim (or objective) so as to maximize the net profit

per month, which means,

max 120x + 150y

but our x and y must satisfy the aforementioned restrictions. In conclusion, the ultimate

model of the problem becomes

max 120x + 150y

subject to

1000 ≤ x ≤ 2000

800 ≤ y ≤ 1700

x + y ≥ 2000.

Since the model is set up in two dimensional plane, we can actually see what we are

intending to do. Let us draw the region formed by the restrictions on x and y.

The portion shaded in red is the collection of points (x, y) satisfying

1000 ≤ x ≤ 2000

800 ≤ y ≤ 1700

x + y ≥ 2000

Now, what we want is to maximize 120x + 150y in this domain(i.e. red shaded region)

only. In other words we wish to find a pair (x∗, y∗) which lies in the shaded region and

provide the maximum value of our goal function 120x + 150y.
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Though there are infinite points in the identified region and testing of each and every

one of them is not a good idea, we need to design a strategy which can find answer to our

objective in a more simple way. This is what we shall be intending to do in the next few

modules to follow but for the time being let us see how the objective function behaves on

the ‘corner points’ of the shaded region.

The corner points are A, B, C,D, E and their co-ordinates are described in graph. Let

us tabulate the results

Point Value of 120x+150y

A:(1200,800) 264,000

B:(2000,800) 360,000

C:(2000,1700) 510,000

D:(1000,1700) 375,000

E:(1000,1000) 270,000

From these five values(only), we can clearly make out that the best one is C(2000, 1700)

with the maximum value of 120x + 150y as 510,000.

Although, we have not checked it but just by looking at the above graph we can

atleast guess and get confident about our guess that no matter what other point (x, y)

we select in the shaded region, the maximum value still remains 510,000 and no further

improvement(or enhancement) is possible in it within the shaded region.

We can conclude that the company should manufacture 200 scientific calculators and

1700 graphing calculators to get the best monthly profit of Rs 510,000 within the limita-

tions of the company.

Let us see few more examples.

Example1.2 Suppose you need to buy some cabinets for a room. There are two types of

cabinets that you have liked in the market, say X and Y . Each unit of cabinet X costs

you Rs 15000 and requires 6 square feet of floor space, and holds 8 cubic feet of files. On

the other hand each unit of cabinet Y Costs Rs 12000, requires 8 square feet of floor space

and holds 12 cubic feet of files. You have been given Rs 140,000 for this purchase, though

you may not spend all. The office has room for no more than 72 square feet of cabinets.

How many of each model you must buy in order to maximize the storage volume?

As done in previous example, let us introduce two variables x and y for numbers of models

X and Y cabinets purchased respectively. Naturally, x ≥ 0, y ≥ 0.

If we look at the cost restriction then, we must have,

15000x + 12000y ≤ 140000
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or equivalently

15x + 12y ≤ 140.

Now, think of floor space restriction. Then,

6x + 8y ≤ 72 or 3x + 4y ≤ 36

There are no more restrictions to take care off. Now see what is our objective. It is to

maximize the requisite volume. By volume data of X and Y , we have

Volume= 8x + 12y

Thus, we can easily say that the model that we need to solve is the following

max 8x + 12y

subject to

15x + 12y ≤ 140

3x + 4y ≤ 36

x, y ≥ 0.
We try and plot the graph of restrictions on x and y.

The shaded region shows all points (x, y) which satisfy the conditions

15x + 12y ≤ 140

3x + 4y ≤ 36

x, y ≥ 0.
The point B is the point of intersection of lines 150x + 12y = 140 and 3x + 4y = 36.

Again what we see is that there are simply too many points in shaded region to get the fi-

nal best answer. It is again unreasonable to check each and every one of them individually.

But we can see what value our objective function 8x+12y takes on the four corner points.

Point Value of 8x+12y

O:(0,0) 0

A:(9.34,0) 74.72

B:(5.34,5) 102.72

C:(0,9) 108

The maximum value among these four is 108 at the point C : (0, 9). Unlike previous

example it is little difficult to get the idea that among all points in the shaded region, C
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will still yield the best objective value. But believe us (at least for the time being) that

it will indeed be so.

Hence you can buy 9 cabinets of type Y for the office to maximize the volume capacity.

There are few things that we would like you to observe from above two examples (al-

though, we agree that ‘two’ examples is not a large number for any conclusion).

(i) The shaded region is non-empty and closed bounded polyhedron.

(ii) The best value for objective function is at the corner of the shaded region.

Is it a fluke or phenomenas observed sometimes or always happening events or

simply we do not know!

Let us see the following model.

Now, we have deliberately avoided the language of the problem but concentrated on

its model. Perhaps, I am confident that you all can easily build the model for a given

situation!!

Example1.3 max 7x + 5y

subject to

x + y ≥ 1

2x− y ≤ 2

x, y ≥ 0.
The graphical description is as follows:

Now, observe that the shaded region is closed non-empty but not bounded from above.

Is there anything wrong with the model! No, nothing; rest assure that it can happen

that the domain region where you have to find an answer of your problem may exhibit

unbounded behaviour. But one thing is still here, the shaded region is a polyhedron.

Now, look at the objective function 7x + 5y. By increasing the value of y upwards, in

the region only, we can increase the value of the objective function to infinity. Thus, we
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do not have the best answer or point in a classical sense. In fact the objective-value is

unbounded within the shaded region.

Now, suppose instead we take an objective function as 7x − 5y (just a change of sign

with y-coefficient). Then the point (1,0) yields the maximum value for this function.

Think how do we claim it! We will definitely answer this query but after a while.

What we observe is that, if the domain region of search for the ‘best’ point is unbounded

then, the objective value can both be unbounded or finite. Let us look at some other

models to exhibit more cases.

Example1.4 Consider

max x1 + 1
2
x2

subject to

3x1 + 2x2 ≤ 12

−x1 + x2 ≥ 4

x1 ≤ 2

x1 + x2 ≥ 8

x1, x2 ≥ 0


(1)

Repeating the procedure highlighted in previous examples, we first determine the set of

points (x1, x2) satisfying (1).

The red depicts points satisfying x1 + x2 ≥ 8, while the orange shaded region is those

points satisfying 3x1 + 2x2 ≤ 12. The green for x1 ≤ 2 and blue for −x1 + x2 ≥ 4.

What we observe is that there is no region which is the intersection of all four colors. In

other words, we mean to say that there is no point (x1, x2) satisfying all four inequalities

and non-negativity restriction in (1) simultaneously.

In such a case, we call the problem as infeasible. The terminology ‘infeasible’ comes

because the points satisfying the restrictions on search domain (the shaded region) are

called feasible points and the domain (or shaded region) is called feasible set.
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Thus if feasible set in a problem is an empty set (like in above example), it is natural

to call the problem ‘infeasible’.

Moving ahead, let us consider one more example before we summarize all this discus-

sion.

Example1.5 Consider

max 6x1 + 10x2

subject to

3x1 + 5x2 ≤ 13

5x1 + 3x2 ≥ 15

x1, x2 ≥ 0.
The graphical depiction of the model is as follows.

Let us compute objective values at four corner points

Point objective value

O:(0,0) 0

A:(3,0) 18

B:(9
4
, 5

4
) 26

C:(0,13
5
) 26

Note that objective value is maximum for both corners B and C (which are adjacent

corners). Now, suppose we choose any λ ∈ (0, 1) and take a point.

λ
(

9
4
, 5

4

)
+ (1− λ)

(
0, 13

5

)
=

(
9
4
λ, 5

4
λ + (1− λ)13

5

)
(2)

Actually this is a parametric equation of the line segment BC, i.e. any point on BC

is type (2) only for some λ ∈ (0, 1).

Compute the object value at the point in (2); it is equal to

6
(

9
4
λ
)
+ 10

(
5
4
λ + 13

5
(1− λ)

)
= 26, ∀ λ ∈ (0, 1).
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Consequently the objective value on all points on the line segment BC including B

and C remains 26. And believe me it is the maximum value of objective function within

the shaded region.

This is the case when we do not have a unique optimal solution but infinite optimal

solutions. However, note that optimal value remains unique.

Our observation from above examples can be summarized as follows:

The other two important observations are:

• Optimal solution (if exists) is not in the interior of the feasible set(shaded region)!

• Among all optimal solutions (if exist) one of the optimal solution must be a “corner

point” of the feasible set.

• A problem can have either no solution, or a unique optimal solution or an infinite

optimal solution; no other case is possible.

Although we have made all these conclusions based on few simple examples in two-

dimensional, but rest assure we will learn in next few lectures to prove them in n-

dimensional finite real space.

Let us give a formal description of what class of problems we will concentrate on in the

chapters to come in this course. We will be studying problems having following structure.

(P) max z = cT x

subject to

Ax ≤ b

x ≥ 0
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where A ∈ Rm×n, c ∈ Rn, b ∈ Rm, x ∈ Rn.

Though we have written all inequalities in ≤ form but some of them could be ≥ or =

types also.

The restrictions on x restrict the domain in which we have to search a solution(if exists)

for (P) is described by

S = {x ∈ Rn|Ax ≤ b, x ≥ 0}.
is called the feasible set of (P). Any decision vectors x ∈ S is called feasible solution of (P).

The decision variable x∗ ∈ S such that cT x∗ ≥ CT x, ∀x ∈ S, is called an optimal solution

of (P) and cT x∗ is called the optimal value of z. The function cT x to optimize (here

maximization) is called the objective function of (P ) and the inequalities describing the

feasible set S of (P ), i.e., Ax ≤ b, are called the constraints of (P ). The restriction,

x ≥ 0, is called the non-negativity condition on x.

Since all the functions (i.e., objective function and m constraints are linear functions of

decision variable x, the problems of the type (P) called linear programming problems

or simply LPP.

Note that as it is not necessary to have all constraints in (P ) to be ≤ type (we have used

it for notational convenience), it is also not necessary to have max problem only. We can

work our for min problem because

min z = cT x = −[max(−z) = −cT x].

Thus, we may solve max problem with negative objective coefficients (than the one given),

and later on if (−cT )(x∗) is the optimal value of max problem, then cT x∗ is the optimal

value of the original min linear programming problem.
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